Cranial and trunk neural crest cells use different mechanisms for attachment to extracellular matrices.

نویسندگان

  • T Lallier
  • G Leblanc
  • K B Artinger
  • M Bronner-Fraser
چکیده

We have used a quantitative cell attachment assay to compare the interactions of cranial and trunk neural crest cells with the extracellular matrix (ECM) molecules fibronectin, laminin and collagen types I and IV. Antibodies to the beta 1 subunit of integrin inhibited attachment under all conditions tested, suggesting that integrins mediate neural crest cell interactions with these ECM molecules. The HNK-1 antibody against a surface carbohydrate epitope under certain conditions inhibited both cranial and trunk neural crest cell attachment to laminin, but not to fibronectin. An antiserum to alpha 1 intergrin inhibited attachment of trunk, but not cranial, neural crest cells to laminin and collagen type I, though interactions with fibronectin or collagen type IV were unaffected. The surface properties of trunk and cranial neural crest cells differed in several ways. First, trunk neural crest cells attached to collagen types I and IV, but cranial neural crest cells did not. Second, their divalent cation requirements for attachment to ECM molecules differed. For fibronectin substrata, trunk neural crest cells required divalent cations for attachment, whereas cranial neural crest cells bound in the absence of divalent cations. However, cranial neural crest cells lost this cation-independent attachment after a few days of culture. For laminin substrata, trunk cells used two integrins, one divalent cation-dependent and the other divalent cation-independent (Lallier, T. E. and Bronner-Fraser, M. (1991) Development 113, 1069-1081). In contrast, cranial neural crest cells attached to laminin using a single, divalent cation-dependent receptor system. Immunoprecipitations and immunoblots of surface labelled neural crest cells with HNK-1, alpha 1 integrin and beta 1 integrin antibodies suggest that cranial and trunk neural crest cells possess biochemically distinct integrins. Our results demonstrate that cranial and trunk cells differ in their mechanisms of adhesion to selected ECM components, suggesting that they are non-overlapping populations of cells with regard to their adhesive properties.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Dissimilar regulation of cell differentiation in mesencephalic (cranial) and sacral (trunk) neural crest cells in vitro.

During development neural crest cells give rise to a wide variety of specialized cell types in response to cytokines from surrounding tissues. Depending on the cranial-caudal level of their origin, different populations of neural crest cells exhibit differential competence to respond to these signals as exemplified by the unique ability of cranial neural crest to form skeletal cell types. We sh...

متن کامل

Distribution of a putative cell surface receptor for fibronectin and laminin in the avian embryo

The cell substratum attachment (CSAT) antibody recognizes a 140-kD cell surface receptor complex involved in adhesion to fibronectin (FN) and laminin (LM) (Horwitz, A., K. Duggan, R. Greggs, C. Decker, and C. Buck, 1985, J. Cell Biol., 101:2134-2144). Here, we describe the distribution of the CSAT antigen along with FN and LM in the early avian embryo. At the light microscopic level, the staini...

متن کامل

Cell lineage and cell migration in the neural crest.

The neural crest is a transient embryonic structure whose cells migrate extensively before giving rise to a variety of differentiated cell types. Both intrinsic cell lineage information and environmental cues are thought to play a role in determining the fate of these cells. Early in development, these cells can be divided into distinct populations based on their axial level of origin. Cranial ...

متن کامل

Trunk Neural Crest Has Skeletogenic Potential

During early vertebrate development, neural crest cells emerge from the dorsal neural tube, migrate into the periphery, and form a wide range of derivatives. There is, however, a significant difference between the cranial and trunk neural crest with respect to the diversity of cell types that each normally produces. Thus, while crest cells from all axial levels form neurons, glia, and melanocyt...

متن کامل

Ets-1 Confers Cranial Features on Neural Crest Delamination

Neural crest cells (NCC) have the particularity to invade the environment where they differentiate after separation from the neuroepithelium. This process, called delamination, is strikingly different between cranial and trunk NCCs. If signalings controlling slow trunk delamination start being deciphered, mechanisms leading to massive and rapid cranial outflow are poorly documented. Here, we sh...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Development

دوره 116 3  شماره 

صفحات  -

تاریخ انتشار 1992